

Monitoring the State of Charge of a Vanadium Redox Flow Battery Using Ultrasonic Sensors: Regular Operation and Degradation Effects

M. Deutscher¹, R. Garcia Rosas², J. Henn¹, F. Säuberlich³, M. Valencia García³, T. Will¹, M. Zimmer²

- MIB GmbH, Bahnhofstraße 35, 79206 Breisach am Rhein, Germany
- ² Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany
- ³ 1st Flow Energy Solutions GmbH, Im Brunnenfeld 6, 79224 Umkirch, Germany

MOTIVATION

- Monitoring the state of charge (SoC) and state of health (SoH) is critical for the operational management of a redox flow battery
- SoC and SoH are usually costly to measure and require the consideration of long-term degradation effects
- Ultrasonic flow sensors are used to monitor the SoC and SoH of a vanadium redox flow battery

REGULAR OPERATION (STEADY SOH) OS 0.4 0.2 -

SoC model prediction for steady SoH based on SoS+ (SD=2.3%)

EXPERIMENTAL

Ultrasonic sensor measurements

- Speed of sound (SoS)
- Acoustic properties
- Temperature

Scenarios

- Regular operation
- Pre-charge procedure
- High charging rate

Reference

- Separate measuring cell calculates Open-Circuit-Voltage (OCV)
- Nernst equation used to calculate SoC
- Coulomb Counting used to determine SoH

Transmitter V A Set Esc Receiver

Left: MIB Ultrasonic Flow Sensor Right: Measuring principle

PRE-CHARGE PROCEDURE

- Initially: Both electrolytes have the same speed of sound
- During initial charging: Speed of sound measurements drift apart
- Pre-charge is completed at 1.2V
- Regular operation between 1.26V and 1.56V
- Speed of Sound provides valuable information for precharge procedure

Open-Circuit-Voltage vs. Speed of Sound

SCHEME

Scheme of a Vanadium Redox Flow Battery and sensor positions

HIGH CHARGING RATE (CHANGING SOH)

High currents lead to crossover effects and recoverable loss of capacity

Ultrasonic measurements of **negative** electrolyte give information about the relative capacity

Not taking the SoH into account leads to flawed SoC predictions → SoH-adapted **SoC prediction** performs better

→ Properties of both electrolytes are useful to predict the SoH and to get valid SoC predictions dependent on the SoH

SOC / SOH MODEL

Speed of sound of negative V²+/V³+ electrolyte* SoS+ Speed of sound of positive V⁴+/V⁵+ electrolyte*

*adapted by temperature and acoustic properties

CONCLUSION

Both **SoC** and **SoH** can be monitored by **ultrasonic sensors**, even for nonregular scenarios. While the **negative electrolyte** provides information about the SoH, the SoC estimation is dependable on the SoH itself and the ultrasonic properties of the **positive electrolyte**. An application for other types of redox flow batteries is conceivable.

This work was supported by the Ministry of Economic Affairs, Labour and Tourism Baden-Württemberg, Germany within the project "KultSens".